Modeling a Spherical Loudspeaker System as Multipole Source

Franz Zotter, Alois Sontacchi, Robert Höldrich

Institute of Electronic Music and Acoustics, e-mail: {zotter, sontacchi, hoeldrich}@iem.at

University of Music and Dramatic Arts, 8010 Graz, Austria

Introduction

One part of our project “Virtual Gamelan Graz” (VGG) deals with the analysis and re-synthesis of acoustic radiation considering selected Gamelan instruments. Spherical loudspeaker arrays seem to be particularly appropriate for the re-synthesis task. This kind of sound source consists of a solid spherical body, into which individual, seperately driven loudspeakers are mounted. In this article, we introduce an analytic model thereof.

Similar to the model of Tarnow [1], we want to model spherical speaker systems, e.g. with the shape of a platonic solid, analytically. Our aim here is not omnidirectional playback, but the playback of Spherical Harmonics, like described in Warusfel [4][5] and Kassakian [6].

Multipole Source Model

For an analytic description of spherical loudspeaker arrays, we assume a model of the boundary condition for the radial sound particle velocity\(^1\) \(v(\varphi, \vartheta)\)\(_{r_0}\) on a sphere with the radius \(r_0\). We decompose \(v(\varphi, \vartheta)\)\(_{r_0}\) into \(L\) discrete regions, each one describing the area of a loudspeaker membrane with its own velocity \(v_l\):

\[
v(\varphi, \vartheta)\big|_{r_0} = \sum_{l=1}^{L} v_l \cdot a_l(\varphi, \vartheta),
\]

where the aperture functions \(a_l(\varphi, \vartheta)\) can be 1 or 0, and do not overlap, i.e. \(\int a_i(\varphi, \vartheta) a_j(\varphi, \vartheta) \, d\varphi d\vartheta = 0\), \(\forall l \neq j\):

\[
a_l(\varphi, \vartheta) = \begin{cases}
1 & \text{at } l^{th} \text{ loudspeaker,} \\
0 & \text{otherwise.}
\end{cases}
\]

Eventually, the residual region \(\hat{a}(\varphi, \vartheta) = 1 - \sum_l a_l(\varphi, \vartheta)\) describes solid parts of the array, where \(v = 0\). At first, let us consider an aperture function \(\hat{a}(\vartheta)\) of a polar cap with aperture angle\(^2\) \(\alpha\):

\[
\hat{a}(\vartheta) = 1 - u(\vartheta - \alpha/2) \quad \rightarrow \quad \hat{A}_\alpha,
\]

1^All relations hold for the frequency domain at \(\omega\). We skipped the frequency variable \(\omega\) in the equations for better readability.

2^The unit step function \(u(x)\) equals 0 for \(x < 0\), and 1 for \(x \geq 0\).

\[
\hat{A}_n = \begin{cases}
\cos \left(\frac{\vartheta}{2} \right) P_n \left[\cos \left(\frac{\vartheta}{2} \right) \right] - P_{n-1} \left[\cos \left(\frac{\vartheta}{2} \right) \right], & n > 0 \\
1 - \cos \left(\frac{\vartheta}{2} \right), & n = 0.
\end{cases}
\]

\[
\delta(\varphi - \varphi_l) \cdot \delta(\vartheta - \vartheta_l) \rightarrow Y^\ast_{nm}(\varphi_l, \vartheta_l),
\]

\[
V_{nm}|_{r_0} = \sum_{l=1}^{L} v_l \cdot \hat{A}_n \cdot Y^\ast_{nm}(\varphi_l, \vartheta_l).
\]

Inserting Eq. 6 into the equation of radiation for the multipole source, cf. Williams [2] and Giron [7], we may
express the sound pressure of the Spherical Harmonic nm of our array model as:

$$ S_{pnm}(kr, kr_0) = i \rho_0 c h_n^{(2)}(kr) \sum_{l=1}^{L} \vartheta_l \cdot \hat{A}_n \cdot Y_{nm}^*(\varphi_l, \theta_l), $$

(7)

wherein $i = \sqrt{-1}$, ρ_0 is the sound impedance of the air, c the sound velocity, $k = \frac{\omega}{c}$ is the wave number, r_0 the array radius, $r > r_0$ the radius in space, $h_n^{(2)}(x)$ the spherical Hankel function for radiation, $h_n^{(2)}(x)$ its derivative.

Radiation Synthesis

At this point, we are able to control the radiation by adjusting the loudspeaker velocities ϑ_l in Eq. 7. Suppose, we are given the array radius, hence kr_0. For the synthesis of the Spherical Harmonic nm at a chosen target argument kr, we now face the Least-Squares problem3:

$$ \min_{\vec{v}} \sum_{nm=1}^{(N+1)^2} \| S_{pnm}(kr, kr_0) - \delta_{nm} \|_2^2. $$

(8)

Its solution provides a vector of suitable velocities $\vec{v} = [\vartheta_1, \ldots, \vartheta_L]^T$. Below, we replace \vec{v} by the extended notation $\vec{v}_{nm}^{(kr, kr_0)}$ to indicate the dependency of the solution on nm and the choice of (kr, kr_0). Note that we can only control Spherical Harmonics up to the order N, bounded by $N \leq \sqrt{L} - 1$.

Area of Operation

Despite the small Least-Squares errors for Spherical Harmonics up to order $n \leq N$, substantial errors arise due to aliasing for Spherical Harmonic orders $n > N$. Nevertheless, because the radial propagation in Eq. 7 suppresses higher orders $n > 2\sqrt{kr_0} - 1$, we get consistent operation under certain circumstances. As a simple criterion, we may require the error measure:

$$ \sigma_e^2 = \sum_{nm=0}^{(N+1)^2} \left[\sum_{nm=0}^{\infty} \| S_{pnm'}(kr, kr_0) \|_{\delta_{nm}^{(kr, kr_0)}} - \| \delta_{nm} \|_2^2 \right], $$

(9)

to be bounded $\sigma_e^2 < -3$dB. Here, $\delta_{nm}^{(kr, kr_0)}$ denotes the velocity vector solving the Least-Squares problem in Eq. 8.

Example: Platonic Loudspeaker Systems

Finally, we want to assess the synthesis errors considering platicon loudspeaker layouts. Fig. 2 shows plots of the $\sigma_e^2 = -3$dB contour on the corresponding error surfaces. For each layout, the membrane aperture was chosen to be $a = 0.5 \sigma_{max}, \sigma_{max}$ describing the maximum non-overlapping aperture. Note that the icosahedron with 20 faces is the only layout capable of synthesis up to $N = 3 \leq \sqrt{20} - 1$. In this constellation, the bounds are $kr_0 < 2.8$ and $r > r_0 > 2.3$, i.e. given the array radius $r_0 = 0.1$m, the icosahedral array meets the error target for frequencies $f < 1.5$kHz and distances $r > 0.23$m.

4The discrete Dirac delta distribution δ_{nm} equals 1 at $nm' = nm$, and 0 otherwise.

Conclusions

We have developed an analytical model of spherical loudspeaker arrays dedicated to the synthesis of Spherical Harmonic radiation. Our model turns out a very useful tool, as it can be used to determine the capabilities of spherical loudspeaker array designs.

Acknowledgements

We gratefully thank the Zukunftsfonds Steiermark for supporting our work (Prj. 3027). Special thanks go to Robert Höldrich for discussing and improving the paper.

References

